navit

The Navit Team

Apr 14, 2024

Preparation

1.1 Getasupported map package
1.2 Install TTS
1.3 ConnectGPS
Getting started

2.1 Setup proper startup-position
22 SetupGPS
23 EnableMap....................
Maps

3.1 OpenStreetMap
32 Binfile oL
Configuration

Configurable Sections

51 General
52 Display
53 Vehicle
54 Maps e e
5.5 Layout,
56 Advanced
Changelog

6.1 Unreleased
6.2 v0.5.6-2021-03-06
6.3 v0.55-2020-08-08
6.4 v0.54-2020-01-18
6.5 v0.53-2018-08-31
6.6 v0.52-2018-08-30
6.7 v0.5.1-2018-04-19
6.8 v0.5.0-2015-12-31
6.9 v0.5.0-rc2-2015-09-02
6.10 v0.5.0-rc1-2015-08-08

Programming guidelines
7.1 Enforced guidelines via CircleCI

7.2 CodingStyle

Commit guidelines

NAVIT'S USER MANUAL

W W W W

WD L D

10

11

12

13

14

15

8.1 ‘Core’ components Changes o v v ittt e e e e e e e e 61

82 Commitperfeature e e e e e e e e e e e e 61
8.3 Formatofthe commitlog e e e 61
Linux Development 63
9.1 Builddependencies e e e e e e e e 63
9.2 Taking care of dependencies Lo e e e e e e e 65
Android Development 69
10.1 Developing for Android e e e e 69
10.2 Testing an alternativebuild oo 72
MacOS Development 73
WARNING: These instructions are currently unmaintained. Please feel free to submit a PR if you manage

to build navit on Mac OSX. 75
12.1 Whatyouwillneed e e e e 75
12.2 Installation instruction L e e e e 75
123 Speech o L e e 76
12.4 Using Xcode o e e e e e 76
12.5 Something went Wrong?o e e e e e e e e e 76
WinCE Development 77
13.1 Building using arm-mingw32ce e e e e e e e e e e 77
13.2 Remote Debugging e 78
13.3 Building using arm-CegCC o i e e e e e e e e e e e e e e 78
13.4 Building Navit o e e e e e 81
Windows Development 83
14.1 Compilingusing CMake e e e e 83
14.2 Compiling / debugging using CodeBlocks & mingw compiler 83
14.3 Compiling and running using cygwin oL Lo 84
14.4 Compiling a native binary using mingwo 87
14.5 TroubleShooting L . e e e 87
14.6 Cross-Compiling win32 exe using Linux Ubuntu 14.04.1 87
14.7 Windows Mobile/Windows CE e 89
Privacy pollicy 93

navit

This document is the official User Manual for Navit, the OpenSource vector based navigation software.
Navit is a open source (GPL) car navigation system with routing engine.

It’s modular design is capable of using vector maps of various formats for routing and rendering of the displayed map.
It’s even possible to use multiple maps at a time.

The user interfaces are designed to work well with touch screen displays. Points of Interest of various formats are
displayed on the map.

The current vehicle position is either read from gpsd or directly from NMEA GPS sensors.

The routing engine not only calculates an optimal route to your destination, but also generates directions and even
speaks to you.

Navit currently speaks over 70 languages!

Navit is highly customizable, from map layouts and on-screen display to the details of the routing engine.

Shellmound Street 188km / 01:50

64th Street

44 P

There are much more options, see [[configuration]].

NAVIT'S USER MANUAL 1

https://github.com/navit-gps/navit/

navit

2 NAVIT'S USER MANUAL

CHAPTER
ONE

PREPARATION

1.1 Get a supported map package

Navit can use different Maps formats, including free OpenStreetMap data. In order to use one of these maps, download
a map of your desired area and store it into a local folder (such as navit/maps or /ust/share/navit/maps).

1.2 Install TTS

To get speech support, you need to install a text-to-speech tool such as espeak, mbrola or festival. These tools can be
invoked from the command line. Test your setup by invoking the tools manually e.g.

[espeak "This is a text!" }

On some systems Navit comes with integrated espeak support, so you don’t need to download it separately.

1.3 Connect GPS

Now connect your GPS. The exact procedure for this varies depending on the type of GPS device you are using and
how you connect it to your computer. On Linux / Unix systems, your GPS should typically show up as a character
device, i.e., you will find an entry in the /dev folder corresponding to your GPS device. Again, the file name depends
on the type and connection method of your GPS receiver. See [[Connecting a GPS receiver]] for details.

Most GPS receiver will output the position in [[NMEA]] format, which can be used directly in Navit or using a GPS
daemon program such as gpsd. A simple way to test whether your GPS receiver works and outputs NMEA data is
to dump its output to a console. For example, if your GPS receiver can be found at /dev/rfcomm0, you can dump its
output using

[cat /dev/rfcomm®]

The output should give you steady NMEA position updates. You can feed this information into gpsd / xgps or QLand-
karte to see a graphical representation of your position and to check whether the output corresponds to your current
position.

navit

4 Chapter 1. Preparation

CHAPTER
TWO

GETTING STARTED

Currently Navit doesn’t provide a graphical tool to change settings, so you have to do the changes manually using a
texteditor. Please open your current navit.xml file and do the following steps:

2.1 Setup proper startup-position

On Navit’s very first startup, it needs a center to look at on the map. By default this is set to Munich in Germany (at
latitude 48.08 and longitude, which is conveniently covered by the sample map created on installation).

[<navit center="4808 N 1134 E" />

See furthermore: Configuration

2.2 Setup GPS

Add the GPS connection

[<vehic1e name="My" enabled="yes" source="file://dev/ttyS®" active="1"/> J

See furthermore: Configuration

2.3 Enable Map

Just change the map entry corresponding to your local folders

[<map type="binfile" enabled="yes" data="/var/navit/maps/uk.bin" />

navit

6 Chapter 2. Getting started

CHAPTER
THREE

MAPS

Navit can use a variety of maps from a number of sources. This includes free and commercial material, that can be
read using different map drivers which allow different sets of functionality. The visual design of maps can be adjusted
with a layout.

The following matrix shows at-a-glance the features that each supported map type has.

Provider Coverage Age Binfile Garmin mg poi_geodownload textfile
OpenStreetMap global daily Yes Yes

Garmin maps global Yes Yes

Marco Polo Grosser Reiseplaner EU >4y

Routeplaner Europa 2007 EU >4y

Map + Route EU >4y

3.1 OpenStreetMap

OpenStreetMap <http://www.openstreetmap.org/> is a free editable map of the whole world. It is made by people like
you. OpenStreetMap allows you to view, edit and use geographical data in a collaborative way from anywhere on Earth.
Maps from OpenStreetMap can be used in Navit.

3.1.1 Quick Start

¢ Go to Navit Planet Extractor

e Zoom in and select the area that you are interested in. Use the ‘Map Controls’ on the right to switch between
‘Navigation’ and ‘Select’ modes. or use

* preselected areas:

Germany
France

BeNeLux

Spain/Portugal
— Italy

Entire planet

 Hit “Get Map!”

http://maps.navit-project.org/
http://maps.navit-project.org/api/map/?bbox=5.185546875,46.845703125,15.46875,55.634765625
http://maps.navit-project.org/api/map/?bbox=-5.44921875,42.01171875,8.437500000000002,51.6796875
http://maps.navit-project.org/api/map/?bbox=2.08740234375,48.8671875,7.778320312500001,54.51416015625
http://maps.navit-project.org/api/map/?bbox=-11.0302734375,34.87060546875,4.614257812500003,44.40673828125
http://maps.navit-project.org/api/map/?bbox=6.52587890625,36.38671875,18.96240234375,47.197265625
http://maps.navit-project.org/planet.bin

navit

* Move the downloaded map to the directory of your choice, and add it to the active the mapset (see [[Configura-
tion]]) in navit.xml with a line similar to the following:

<mapset>
<map type="binfile" enabled="yes" data="/path/to/your/map/osm_bbox.bin" />
</mapset>

3.1.2 Add OSM map to your mapset

Move the downloaded map to the directory of your choice, and add it to the active mapset (see [[Configuration]]) in
navit.xml with a line similar to the following:

<mapset>
<map type="binfile" enabled="yes" data="/path/to/your/map/my_downloaded_map.bin" />
</mapset>

3.1.3 Topographic Maps

Navit will display elevation/height lines but the required data is not included in most OSM derived maps.

Navit compatible maps with height lines can be created by feeding the output of Phyghtmap
<http://wiki.openstreetmap.org/wiki/Phyghtmap> to Navit's maptool. Alternatively the SRTM data can be down-
loaded in osm.xml format http://geoweb.hft-stuttgart.de/SRTM/srtm_as_osm/, avoiding the Phygtmap step. The
information can be either merged with OSM derived maps or used in a separate layer.

Many Garmin type maps such as http://www.wanderreitkarte.de/garmin_de.php also have the height lines information
but routing will not work with them.

3.1.4 Processing OSM Maps yourself

You can create your own Navit binfiles from OSM data very easily using [[maptool]], the conversion program which
installs alongside Navit. “’maptool” can process both OpenStreetMap XML Data files (.osm files) and OpenStreetMap
Protobuf Data files (.pbf files) Follow these steps to process your own maps.

Download your own OSM data

OSM data can be downloaded from a variety of sources. OpenStreetMap XML Data files are regular textfiles, easily
editable in any text editor. OpenStreetMap Protobuf Data files are binary files, which take up less space (so are quicker
to download and process) but are not editable.

* OpenStreetMap XML Data

— Geofabrik provides pre-processed OpenStreetMap XML Data files of almost all countries, and all conti-
nents. This method is probably the easiest way of downloading OpenStreetMap XML Data for an entire
country or continent. Note that the OSM files are bzipped

— planet.openstreetmap.org hosts the complete data set (the whole world). You can use Osmosis to cut it into
smaller chunks.

— OpenStreetMap ReadOnly (XAPI) The API allows to get the data of a specific bounding box, so that down-
load managers can be used. For example: wget -O map.osm “http://xapi.openstreetmap.org/api/0.6/map?
bbox=11.4,48.7,11.6,48.9”

8 Chapter 3. Maps

http://geoweb.hft-stuttgart.de/SRTM/srtm_as_osm/
http://www.wanderreitkarte.de/garmin_de.php
http://download.geofabrik.de/osm/
http://planet.openstreetmap.org
http://wiki.openstreetmap.org/index.php/Osmosis
http://wiki.openstreetmap.org/wiki/Xapi
http://xapi.openstreetmap.org/api/0.6/map?bbox=11.4,48.7,11.6,48.9
http://xapi.openstreetmap.org/api/0.6/map?bbox=11.4,48.7,11.6,48.9

navit

— OpenStreetMap (visual) allows you to select a small rectangular area and download the selection as Open-
StreetMap XML Data.

* “’OpenStreetMap Protobuf Data™ * [http://download.geofabrik.de/osm/ Geofabrik] provides pre-processed
OpenStreetMap Protobuf Data files of almost all countries, and all continents.

Convert OSM data to Navit binfile

The following examples assume that you have installed Navit system-wide. If this is not the case, you will need to
provide an absolute path to the “’maptool” executable, which is in the navit/maptool folder.

Please also note, that maptool uses country multipolygon relations. So it’s a good idea to include the whole country
boundary to your dataset. You can use the josm editor to download the country boundary relation and save it as osm
file. Then this file can be concatenated with your sub-country level excerpt.

From .osm

[cat my_OSM_map.osm | maptool my_Navit_map.bin]
Or

[maptool -i my_OSM_map.osm my_Navit_map.bin]

Or for multiple OSM data files use the <tt>—dedupe-ways</tt> option to avoid duplication of way data if a way occurs
multiple times in the OSM maps.

~bin

cat my_OSM_mapl.osm my_OSM_map2.osm my_OSM_map3.osm | maptool --dedupe-ways my_Navit_map. ’

From .bz2
[bzcat my_OSM_map.osm.bz2 | maptool my_Navit_map.bin }
From .pbf
[maptool --protobuf -i my_OSM_map.osm.pbf my_Navit_map.bin J

3.1.5 Processing the whole Planet

The OpenStreetMap wiki [http://wiki.openstreetmap.org/index.php/Planet.osm Planet.osm] page lists mirrors where
Planet.osm can be downloaded. There are also downloads of smaller areas such as the UK and parts of Europe. These
smaller excerpts are a lot quicker to download and process.

In case you want the whole planet.osm (24GB in December 2012), it is even possible to process planet.osm. It will
take about 7 hours , requires > 1GB of main memory and about 30 GB disk space for result and temp files - planet.bin
is currently (as of December 2012) 9.6GB:

[bzcat planet.osm.bz2 | maptool -6 my_Navit_map.bin J

3.1. OpenStreetMap 9

http://www.openstreetmap.org/export
http://download.geofabrik.de/osm/
http://wiki.openstreetmap.org/index.php/Planet.osm

navit

Please note -6 option (long name —64bit) used above. It should be used always if output bin file grows above 4GB,
or generated file will not work at all. Using that option on smaller files slightly increases their size and makes them
unreadable by some unzip versions.

3.1.6 Tips

* To enable a map you have downloaded refer [[OpenStreetMap#Adding_an_OSM_map_to_your_mapset| adding
OSM map to navit.xml]]

* If you don’t see any map data in Navit (assuming your map is properly specified in navit.xml) using the Internal
GUI click anywhere on the screen to bring up the menu. Click on “Actions” and then “Town”. Type in the name
of a town that should be within your map data. Select your town from the list that appears. This will bring up a
sub-menu where you can click “View On Map”. Note that if you have a GPS receiver you can also just wait till
you get a satellite lock.

* To avoid changing navit.xml if you update your maps and the maps have different file names use the wildcard
(*.bin) in your navit.xml file. For example:

[<map type="binfile" enabled="yes" data="/media/mmc2/maps/*.bin"/>

3.2 Binfile

Navit has its own map format, called binfile format. It’s a binary format, optimized for use with Navit (rendering,
search, routing on embedded devices).

3.2.1 Dividing the world into tiles

The map coordinates of binfile are in meters, measured from equator and null meridian, with a merkator projection.
The limit of this world is about 20000 km in earch direction from this null point. This doesn’t cover polar regions, but
it’s ok for now.

So, the world gives a 40000x40000km rectangle (tile). This rectangle is divided into 4 equally-sized sub-rectangles
(tiles) called a,b,c and d counter clockwise ...

* ais top right
* b top left
* ¢ bottom right
* d bottom left
Each of the sub-rectangles (tiles) is then further subdivided, so a rectangle “aa” is top right in “a”

This is continued further up to 14 levels (but the number of levels might be variable). So in the end you get many tiles
which are containing objects which are within this tile... And the tiles are also containing references to tiles which are
within them.

A Navit binfile is actually a ZIP file; each tile is a member file in a zip file. So to extract an area of this file, you just
read the zip file sequentially.

If you extract a small binfile using a zip tool, you will see member files adbdbbbbadcacd, adbdbbbbadcacd, Each
file contains the data for one tile.

10 Chapter 3. Maps

navit

3.2.2 Projection
The coordinates are projected using a modified “Google” (i.e. EPSG900913) projection. Navit assumes an earth

radius of 6371000m rather than the WGS84 value of 6378137m. Thus, for navit, the circumference of the earth is (2 x
20015087m).

3.2.3 Tile data format

A tile itself is a dynamic data structure.

As declared in navit/map/binfile/binfile.c, a tile is represented in memory by a struct :

struct tile {
int *start; /% Memory address of the whole data structure */
int “end; /% Memory address of first memory address not belonging to tile
thus tile->end - tile->start represents the size of the tile
* in multiples of 4 Bytes */
int “*pos; /* current position inside the tile */
int *pos_coord_start; /* pointer to the first element inside the tile that is a
* coordinate. That is the first position after the header of a
* tile. The header holds 3 entries each 32bit wide integers.
* header[0] holds the size of the whole data-structure.
* header[1] holds the type of the item
* header[2] holds the size of the coordinates in the tile */
* current position inside the coordinates region within the,

%

int *pos_coord;
~tile */

int *pos_attr_start; * pointer to the first attr //TODO explain attr format// data
* structure inside the tile's memory region */
* current position inside the attr region */

* link to the next tile */

int *pos_attr;
int *pos_next;
int zipfile_num;

RE e 5 N

3.2.4 Content

Inside the binfile, each tile file contains a list of items. Each item is stored like this (everything is 4 bytes wide and
always aligned):

{
int: Length of the item (not including this length field) in integers
int: Type of the item (from item_def.h)
int: Length of the coordinate data which follows in integers
{
int: pairs of coordinates with consisting of 2 integers each
} 0..n
{
int: length of the attribute (not including this length field) in integers
int: Type of attribute (from attr_def.h)
{
int: Attribute data, depending on attribute type
} 0..n

(continues on next page)

3.2. Binfile 11

https://github.com/navit-gps/navit/blob/trunk/navit/map/binfile/binfile.c

navit

(continued from previous page)

} 0..n

3.2.5 Extracting a specific area

You can calculate the bounding box of the current tile.
Then there are two possibilities:

¢ The tile overlaps with the area you are interested in: Then simply copy the whole file data, including its header
to the output, and add an entry to the directory which will be written later

* The tile doesn’t overlap: Then don’t drop that file, but instead write a file with size 0 and the same name to the
output (I will explain later why this is needed), and add an entry to the directory

At some point you will have reached the end of the zip files, then you have to write the zip directory and the “end of
directory” marker.

This will be very fast (you don’t have to look into the zip files, which would mean decompressing and compressing
them again) but has some disadvantages:

* You will have many empty files in it which are not really necessary. This is needed because the reference to
sub-tiles are by number, and not by name (would be slow), and so the position of a tile within the zip file is not
allowed to change

* You get some data you didn’t want to have: this is because a tile which overlaps with your area of course doesn’t
contain only data from your wanted area, but from the area where it is located

3.2.6 How an object is placed in a tile

An object is placed inside of a tile using the following approach
* If the object can fit into one of the 4 top tiles it is placed in that tile

» The 4 sub-tiles are then checked to see if the object will fit inside of any of the four tiles that are contained inside
of the sub-tile. If so, it is moved down a tile. This step is repeated until the object spans 2 or more tiles (or the
lowest tile level is reached)

* If the object can’t fit inside of any of the 4 top sub-tiles it is placed inside of the top-most tile

An object ‘fits’ inside of a tile if the coordinates of the object (min lat, min lon, max lat, max lon) lie inside of the
coordinates of the tile (tile_min_lat, tile_min_lon, tile_max_lat, tile_max_lon)

Any object that cross the equator or the poles is placed in the top-most tile because it can not fit inside of any sub-tile.

Some important objects are placed into upper level tiles despite of their length to be easier reachable for routing or
display purposes. This is done by specifying maximum tile name length for them in item_order_by_type() function in
navit/maptool/misc.c.

BTW, “order” (zoom level) values used to query map and referred in <itemgra> and route_depth are equal to
(tile_name_length-4).

12 Chapter 3. Maps

https://github.com/navit-gps/navit/blob/trunk/navit/maptool/misc.c

CHAPTER
FOUR

CONFIGURATION

Navit is highly modular and customizable. This page aims to point out the most common options which a first-time user
may want to change - power users may want to consult [[Configuration/Full_list_of_options | the full list of options]]. It
is also possible to edit the navit.xml file for your Android device under Windows and Linux (Debian/Ubuntu derivates)
with a third party application called [[NavitConfigurator]].

Setting up Navit is done by editing a configuration file called “navit.xml”. Editing XML configurations files in a text
editor is simple, they are just plain text XML files, that can be edited with any editor. Just remember to “’turn off
‘save UTF8 byte mark’ in Preferences” or navit may complain very much on the first byte of the file.
 The XML
configuration file is splitted into sections within a hierarchy:

<config>
<plugins></plugins>
<navit>
<osd></osd>
<vehicle></vehicle>
<vehicleprofile></vehicleprofile>
<mapset></mapset>
<layout></layout>
</navit>
</config>

Navit comes preshipped with a default navit.xml together with navit_layout_%*.xml files that are stored at various
locations (depending on your system).

For Linux-like OSes:

* in ~/.navit/: e.g: /home/myusername/.navit/navit.xml (This is probably to best place to cus-
tomize your settings!)

¢ in /usr/share/navit or /etc/navit
Navit will apply settings in the following order:
¢ in the current directory (used on Windows)

* location supplied as first argument on the command line, e.g.: navit /home/myusername/
navittestconfig.xml (Used mainly for development)

* in the current directory as navit.xml.local (Used mainly for development)

{{note|In any case, you have to adapt settings to your system!
 This includes especially GPS, map provider and
vehicle: [[Basic configuration]]} }

13

navit

14 Chapter 4. Configuration

CHAPTER
FIVE

CONFIGURABLE SECTIONS

5.1 General

Common options such as units, position, zoom and map orientation, ... be configured in this section.

5.1.1 General Options

Settings which affect Navit’s general behaviour are located within the <navit .. > tag. In a default installation, this
is found on line 31 of navit.xml. By default, the navit tag is set as follows:

[<navit center="4808 N 1134 E" zoom="256" tracking="1" orientation="-1" recent_dest="10"> J

Some common attributes are discussed below. For more advanced features, see [[Configuration/Full_list_of_options |
the full list of options]].

Initial map position

On Navit’s very first startup, it needs a center to look at on the map. By default this is set to Munich in Germany, which
is conveniently covered by the sample map created on installation.

[center:"11.5666 48.1333"]

Coordinates can be written in different formats; see [[Coordinate_format]] for the full list. To determine a specific
latitude and longitude for your location you can use http://itouchmap.com/latlong.html. Usually, changing the “center”
setting is not necessary, since it is only used during the first start. On subsequent starts, Navit will remember the last
map position (stored in “center.txt”’) and ignore the “center” setting.

When Navit starts, it will display the map at a pre-defined zoom. The default zoom level is 256. The lower the value,
the closer you will be zoomed in. <!—what does the zoom number express? How can I estimate it?—>

zoom="256"
For those using the [[SDL GUI]], a level of 128 is recommended.
zoom="128"
Note that once Navit has started, the zoom level can be altered using [[OSD]] or menu items.

Use the orientation attribute to orient the map in either the direction of travel, or oriented North. .To orient the map
in the direction of travel:

orientation=""-1"

or to orient North:

15

http://itouchmap.com/latlong.html

navit

orientation="0"

Orienting the map North whilst in [[3D]] mode will provide visually confusing results, and is not recommended. When
in 3D mode, it’s best to have the map oriented in the direction of travel.

Autozoom

Navit has the ability to autozoom the map in or out dependent upon your speed.
autozoom_active="1"
To de-activate autozoom:

autozoom_active="0"

3D pitch

Navit has the capability to display either a 2D map (bird’s eye perspective) or a [[3D]] map (some amount of tilt looking
to the horizon). Navit’s default configuration is to startup in the 2D perspective but it is possible to specify that Navit
start with a 3D perspective. The amount of tilt is specified by setting the value of <tt>pitch</tt>.

The pitch value defines default camera tilting, with a value from O to 359. Note that usable values lie between 0 and
90 where 0 is bird’s eye perspective looking down and 90 is human perspective looking forward. Also note that values
closer to 90 will slow down map drawing, because the line of sight gets longer and longer and more objects are seen.

For example, the following added to the <tt>navit</tt> tag will force Navit to start with a pitch of 30 degrees:

pitch="30"

Imperial units

By default, Navit use the metric system of measurements when displaying or announcing distances, speeds etc. How-
ever, you can configure Navit to display and announce these values in imperial units. Simply add an <tt>imperial</tt>
attribute to the Navit tag, and set its value to 1, as shown below:

imperial="1"

Speeds should now be displayed in units of miles-per-hour, whilst distances are converted to miles (large distances)
and feet (small distances).

Default layout

When no specific layout has been specified by the user, navit uses a default layout to draw maps. The

<tt>default_layout</tt> attribute of the navit tag allows to specify which layout to use as default;
default_layout="Car”

This string should match the <tt>name</tt> attribute of the required <tt><layout></tt> tag.

See [[Configuration/Layout_Options| layout options]] for more details. [[Category:Customizing]] [[Cate-
gory:Configuration]]

16 Chapter 5. Configurable Sections

navit

5.2 Display

A large number of display properties can be configured, including desktop or touchscreen-optimised GUIs, on-screen
display items and complete control over menu items.

5.2.1 Display Options

The Navit display is highly customisable and consists of the following components
* Graphics driver (appropriate engine for your system, to draw everything)
* GUI (enables user interaction and map display)

* OSD (shows widgets on map screen)

Graphics Driver
Different technologies can be used, to let Navit draw it’s visual components. Not all might be available at your specific
system
The current list of available graphics drivers:
* android, for the Android port
* cocoa, for the iPhone port
» gtk_drawing_area, usually most appropriate on Linux desktop systems
¢ sdl, render inside an X window, or direct to the Linux framebuffer, with min dependencies on external libraries.
* qt5, render using Qt5 library, either using QWidgets or QML. On top of any Qt5 supported display technology.
* win32 - useable with <tt>gtk</tt> or <tt>internal</tt> GUIs for Windows systems only.
Experimental/less maintained drivers:
* qt_qgpainter, render inside X window or on top of Qt Palmtop Environment.
* opengl, rendering via OpenGL
» gtk_gl_ext, rendering via OpenGL using GTK+ OpenGL extension
* gd, rendering using the GD Graphics Library

They can be activated and configured as following:

[<graphics type="gtk_drawing_area" />]

As mentioned, it’s usually best to leave this as whatever the default is within your navit.xml, and only mess around with
it if you know what you are doing, or have been told to by one of the developers.

5.2. Display 17

navit

Graphical User Interface

You can now choose which type of GUI you would like to use with Navit. Not all GUIs work with all Graphics drivers

GUI an- co- gd gtk _drawing_ar gtk _gl_ex opengl gt _gpainte sdl win32 qt5 pre-

droid coa view
GTK
Inter- Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nal
QML2

Generic GUI Options

There are some options available for the gui tag which are used by all the GUI types. These include:
* fullscreen - Enables Navit to start in fullscreen mode.
* pitch - The pitch value to pitch the map to when selecting 3D mode from the menus.
» dimensions - w="1024" h="600"

The following example uses the internal GUI, and starts Navit up in fullscreen mode, and will pitch the map to 35
degrees when 3D mode is selected from the menu. Note that to start Navit in 3D mode by default, [[#Initial 3D
pitch|change the pitch value in the navit tag]]:

[<gui type="internal" enabled="yes" fullscreen="1" pitch="35"> }

Internal GUI

The first GUI is embedded in Navit core and is primarily aimed at [[touchscreen]] devices, or those devices with small
screens (such as netbooks). However, this GUI also works very well on desktops and laptops.

[<gui type="internal" enabled="yes">]

Options

A number of options specific to the internal GUI are available. These include:
* font_size - Base text size to use within the internal menu.
* icon_xs - The size that extra-small style icons should be scaled to (e.g. country flag on town search).
* icon_s - The size that small style icons should be scaled to (e.g. icons of internal GUI toolbar).
* icon_l - The size that large style icons should be scaled to (e.g. icons of internal GUI menu).

* menu_on_map_click - Toggles the ability to bring up the menu screen when clicking on the map. See the
[[Internal_Gui#Menu_Configuration| “internal”> GUI page]] for more information.

An example gui tag using the previous options is shown below:

[<gui type="internal" enabled="yes" font_size="250" icon_xs="48" icon_s="48" icon_1="64">]

More options are discussed on the [[Internal Gui]] and the [[Configuration/Full_list_of_options|full list of options]].

18 Chapter 5. Configurable Sections

navit

GTK GUI

The second GUI is called gtk, and is most useful for those users who wish to use a traditional windowed GUI. This is
one useful to desktop use.

[<gui type="gtk" enabled="yes" /> J

Options

A number of options specific to the gtk GUI are available. These include:
e menubar - enable/disable the menubar
¢ toolbar - enable/disable the toolbar

e statusbar - enable/disable the statusbar

[<gui type="gtk" enabled="yes" menubar="1" toolbar="1" statusbar="1"/>]

5.3 Vehicle

A number of vehicles can be defined within Navit, depending upon the device and/or operating system in use. Vehicle
profiles for routing (eg: car, pedestrian, bicycle...) are also completely configurable.

5.3.1 Vehicle Options

It’s important to understand the separate but linked Navit concepts of a vehicle and [[Vehicleprofile| vehicleprofile]]
element. A vehicle defines the source of positional data (suchas a USB GPS device), and how to present that data to
the user on the map, where the vehicleprofile defines all aspects of routing.

A simple vehicle definition looks like this:

[<vehic1e name="My" enabled="yes" source="file://dev/ttyS0" active="1"/>]

Here some of the available options: * active: If set to 1, makes the vehicle the default active one. Routing, view
centering and map redraw would be applied to this one by default. * enabled: If set to yes, Navit connects to the
vehicle data source and shows the vehicle on the map. * follow: map follows after “n” gps updates (where n=0 means
only when the vehicle leaves the map->saving CPU time) * source : source of GPS (required) * profilename: link the

vehicleprofile for this vehicle.

<!-do we need to keep this keys or note them elsewhere? Obsolete options: * update: This will force the map to be
recentered at your main cursor’s position. * color/color2: The color of the cursor is now specified within the cursor
tag itself. * animate: If set to 1, the cursor will be animated as a moving dotted line, to make it easier to see. —>

5.3. Vehicle 19

navit

GPS

Most essential detail is the gps source, that need to be adapted to your local setup.
Local:

Windows: * source="serial: COM2 baud=4800 parity=N data=8 stop=1" ** For Locosys GT31 (or BGT31 plugged by
USB), settings are: source="serial:COM3 baud=38400 parity=N data=8 stop=1"" where COM3 should be replaced by
the correct COM over USB number.

Windows Mobile: * source="wince:GPD1:” - using the internal GPS driver, configured from Windows Remote GPS
Settings. ** To use a BT GPS it must be configured as outgoing com port and paired, then selected as hardware port in
GPS Settings. ** To start bluetooth on navit startup add bluetooth=""yes”. When exiting navit, the previous bluetooth
state is recovered. * source="wince:COM1:” baudrate="57600"

There is useful [http://w5.nuinternet.com/s66010003 1/SirfTech.htm. SirfTech utility] that can automatically scan ex-
isting serial ports trying different baudrates to detect GPS source.

Linux: * source="file:/dev/rfcomm0” - BlueTooth GPS * source="file:/dev/ttySO” - serial GPS connected to the first
serial port (you may need to add the correct baudrate eg.: freerunner source="file:/dev/ttySAC1” baudrate="9600") *
source="gpsd_dbus:” - via dbus, position reported by gpsd

Network based: If you want to connect multiple tools to your GPS, you need an multiplexer tool,
as gpsd or gypsy. * source="gpsd://host[:port]” - gpsd://localhost, the default one, will try to con-
nect to gpsd on localhost * source="socket:ipaddr:post” - socket connection (expects nmea stream)
* source="socket:ipaddr:2947:r=1" - connect to gpsd in nmea mode (gpsd versions 2.39 or older) *
source="socket:ipaddr:2947:TWATCH={“enable”:true,”nmea”:true};” - connect to gpsd in nmea mode (gpsd
versions newer than 2.39) * source="gypsy://connectstring” - gypsy

Tricks: * source="file:/home/myhome/mynmea.log” : here, navit will replay the nmea logfile (under Windows it is
currently not possible in Navit) * source="pipe:/usr/bin/gpspipe -1’ - any executable that produces NMEA output -
gpsbabel, gpspipe, ... * source="demo://” : to use the demo vehicle. Set your Position and Destination, and vehicle
will follow the calculated route. Useful if you have no nmea data source. * source="null://” : no GPS at all

Logging tracks

To record your trip , you can add a sub-instance “log” to the vehicle. It is possible to add multiple logs.

<log type="gpx" data="track_%Y%m%d%i.gpx" flush_size="1048576" flush_time="900" />
<log type="nmea" data="track_%Y%m%d%i.nmea" flush_size="1048576" flush_time="900" />

This will give a log file named YearMonthDaySequencenumber.gpx/.nmea which will be kept in memory and flushed
to disk when it is 1048576 bytes large or the oldest data is older than 900 seconds. <!-how to define, where the file
get’s stored ?—>

To display your track for more than one hour, you must use [[binfile]] to create a cache file that get’s display <!-do I
need to add it as a map source?—>

[<log type="binfile" data="track.bin" flush_size="0"/>

For customizing what is stored, see [[GPX]]

20 Chapter 5. Configurable Sections

http://w5.nuinternet.com/s660100031/SirfTech.htm
file:/dev/rfcomm0
file:/dev/ttyS0
file:/dev/ttySAC1
file:/home/myhome/mynmea.log

navit

Vehicleprofile

[[Vehicleprofile | Profiles to add in the navit.xml]]
 <!- this is tricky, here we need a step by step introduction—>
Defines the behaviour of the routing and are usually linked to a vehicle section, so switching the “vehicle” (type of
mobility) from within Navit, routing also will change its behaviour. This way, it is possible to include steps for pedestrian
routing, but to exclude it for bike, horse or car routing. Within the vehicleprofile section, roadprofile sections are used
to describe the routing behaviour of different roads. Here’s a very basic example:

<vehicleprofile name="bike" flags="0x40000000" flags_forward_mask="0x40000000" flags_
—reverse_mask="0x40000000" maxspeed_handling="1" route_mode="0">

<roadprofile item_types="path,track_ground" speed="12" route_weight="5">

</roadprofile>

<roadprofile item_types="track_gravelled,track_paved,cycleway,street_service,street_
—parking_lane,street_0,street_1_city,living_street,street_2_city,street_1_land,street_2_
—land,street_3_city" speed="25" route_weight="15">

</roadprofile>

<roadprofile item_types="roundabout" speed="20" route_weight="10"/>

<roadprofile item_types="ferry" speed="40" route_weight="40"/>
</vehicleprofile>

For details on the flags, see [[Vehicle profile flags]]. The speeds are in km/h.
Only the vehicle profile names “car”, “bike” and “pedestrian” are translated in the GUIL

[[Category:Customizing]] [[Category:Configuration]]

5.4 Maps

You can use maps from a variety of sources, any number of maps can be configured and enabled at any one time.

5.5 Layout

Maps are displayed according to the rules defined in the layout. All aspects of the layout are configurable, from POI
icons to colours for a particular type of highway.

For all versions shipped after nov 2018, layout XML configuration is stored in dedicated XML files called with the
prefix ““navit_layout_"" (one file per layout definition).

5.5.1 Layout Options

Layouts

A layout defines how to render a map. Layouts are fully customisable, from the road colours and widths to size and
type of icons to display for specific POIs. The layout is also where the cursor (i.e. the shape which shows where you
are) is defined.
 A number of user-generated layouts and cursor definitions are available at [[Layout]].

5.4. Maps 21

navit

Defining layers

A layout consist of one cursor and one or more layers which are each a set of rules on how and when to draw certain
items. Those rules are called itemgra. The layers are rendered one by one in the order they appear in the XML config
file, as are the items in each layer. If you can’t see an item make sure there is not another one hiding it. If your item is
hidden, you can move your item further down in the layout section of the file.

<layout name="Demo layout" color="#ffefb7" font="Liberation Sans" active="1">
<cursor w="26" h="26">
<layer name="layer_1">
<itemgra item_types="water_poly" order="0-">
<polygon color="#82c8ea" />
<polyline color="#5096b8" />
</itemgra>
</layer>
<layout>

Here the available options: * item_types: Comma separated list of items (see navit/item.h for definitions) * order:
Range for zoom levels. * speed_range: Range for vehicle speed, useful for cursors. * angle_range: Range for pitch
angle. * sequence_range: Useful for animated cursors.

For infos about map icons, see [[Icons]]

Overriding default (shipped) layouts

When the XML config file is parsed, layouts are taken in the order they come, and a layout with an already existing
name overrides a previous definition. The default (shipped) navit.xml includes first system-wide navit_layout_*.xml
files then the user-specific navit_layout_*.xml files, so the system-wide navit_layout_*.xml files can be overiden by
adding a user-specific navit-layout_*.xml containing the same name attribute.

Copying the default navit.xml file to the user-specific location will still use the default shipped layout files, but copying
one or several layout files as well to the user-specific location (and modifying them) allow to override these specific
layouts.

Note on the default layout used by navit

When no layout has been specifically selected by the user (for example at first startup), navit will use the default layout
specified (see [[Configuration/General_Options#Default_layout|the related section to know how to configure this]]).

Using a layer in multiple layouts
Sometimes, multiple layouts can use the same layer. For example, a reduced layout for a cleaner map may use the same
layers as the regular layout, just not all of them.

To use a layer in multiple layouts, it can be referenced using the ref attribute. In place of the regular layer definition,
use an empty tag with only the attributes ““name” and “’ref”:

<layer name="Found items" order="0-">
<itemgra item_types="found_item">
<circle color="#008080" radius="24" width="2" text_size="12"/>
</itemgra>
</layer>
[...]

(continues on next page)

22 Chapter 5. Configurable Sections

navit

(continued from previous page)

<layout name="Demo layout'">
[...]
<layer name="Found items for demo layout" ref="Found items" />
[...]
</layout>
<layout name="Demo layout reduced">
[...]

<layer name="Found items" ref="Found items" />

[...]
</layout>

Note that the layer you want to reuse must be placed “’outside” the layout. Layers defined inside a layout cannot be
reused in this way.

[[Category:Customizing]] [[Category:Configuration]]

5.6 Advanced

There are many more options, including debugging, specific plugins, speech announcements, trip logging, ...

5.6.1 Advanced Options

The rest of this webpage is meant for advanced/power users who’d like to fiddle a little more under-the-hood. The
average user can safely ignore this section!

Speech

Navit can announce driving directions with voice. Navit can use different mechanisms to play these announcements.
Note that not all tools are available on all platforms.

Prerecorded samples

Navit is able to compose phrases if you give it a set of prerecorded samples. Configuration example:

<speech type="cmdline" data="aplay -q %s"
sample_dir="/path/to/sampledir" sample_suffix=".wav" flags="1"
vocabulary_name="0" vocabulary_name_systematic="0" vocabulary_distances="0"/>

The directory “’sample_dir” should contain audio files. “’sample_suffix” is the common file type suffix of those files.
The names of the files (without the suffix) must correspond to the text they contain. For each text it wants to speak,
Navit will look for one or more sample files with corresponding names (ignoring upper/lower case). So for “turn right
in 300 meters” you could use turn.wav, right.wav, in.wav, 300.wav, meters.wav. Navit will prefer files that contain
multiple words: If file “turn right.wav” is present, it will be used even if you have turn.wav and right.wav.

Note that Navit internally handles all text in UTF-8 encoding. If you use a file system where file names are not encoded
with UTF-8 (such as Windows), Navit will only find files for ASCII text. If you use a language that uses non-ASCII
characters, the file name must be the [http://en.wikipedia.org/wiki/Percent-encoding percent encoding] of the UTF-8

representation of the text. For example the filename for “siid” would be “s%c3%bcd.wav” (because “ii” is encoded as
C3BC in UTF-8). For this feature to work, you must set ’flags” to 1.

5.6. Advanced 23

http://en.wikipedia.org/wiki/Percent-encoding

navit

“data” is the program that can be used to play the sample files. You should specify the program name along with any
necessary parameters. The placeholder “%s” will be replaced with the file(s) to be played. All files required for a text
will be passed in one go, so the program will need to support playing multiple files. Note that the %s should “’not” be
quoted; the text is not passed through a shell.

Note that if any file that is needed to compose the complete phrase is missing then Navit will be silent. In that case a
warning will be printed. Unfortunately, there is no complete list of the samples required. However, all the navigation
text is contained in the translation files (.po files), so you can get a rough list.

By default Navit is trying to announce street names. To disable this feature you can set “’vocabulary_name” and
“’vocabulary_name_systematic” to O in the speech tag which will specify that the speech synthesizer isn’t capa-
ble of speaking names. Also there is ‘’vocabulary_distances” which you can set to 0 so only the minimum set of
1,2,3,4,5,10,25,50,75,100,150,200,250,300,400,500,750 as numbers is used.

espeak

[<speech type="cmdline" data="espeak -s 150 -v english_rp %s"/>]

Will use espeak instead, for those who want Navit to speak to them in English, at 150 words per minute. The **%s” is
filled in by Navit when sent to the speech synthesis software (with something like “Turn left” or whatever is appropriate
at the time). If you need more features, you should use an external wrapper script which can contain anything supported
by your shell (see [[Translations]]).

festival
flite
Mbrola

Android

[<speech type="android" cps="15"/>]

Start up in silent mode

To have Navit start up in silent mode, insert <code>active="0"</code> somewhere in your <code>speech</code>
tag. For example on Android:

[<speech type="android" cps="15" active="0"/> J

In this case, you should place a <code>toggle_announcer</code> item in your [[OSD]] configuration, or add a menu
item so you can enable speech output when you need it.

24 Chapter 5. Configurable Sections

navit

Splitting navit.xml

Navit has support for a small subset of XInclude / XPath for including parts of external XML files. Supported is a tag
like

[<xi:inc1ude href="some_file" xpointer="xpointer_stuff" />]

You can leave out either href (xi:include refers to the same file it is in then) or xpointer (xi:include then refers the
complete file), but not both. The “’href” attribute refers to a file relative to the current directory. It is suggested to use
the complete path, such as “’/home/root/.navit/navit-vehicles.xml”.

href is expanded with wordexp internally, so you can do stuff like:

[<xi :include href="$NAVIT_SHAREDIR/maps/*.xml" />]

Some examples on the supported syntax: .. code-block:: xml
<xi:include xpointer="xpointer(/config/navit/layout[@name="Car’]/layer[@name="points’])” />

references to the XML-Tag “layer” with attribute “name” of value “points” within an XML-Tag “layout” with attribute
“name” of value “Car” within an XML-Tag “navit” within an XML-Tag “config”.

<config xmlns:xi="http://www.w3.0org/2001/XInclude">

<xi:include href="$NAVIT_SHAREDIR/navit.xml" xpointer="xpointer(/config/*[name(.)!="navit
<'"D"/>

<navit center="4808 N 1134 E" zoom="256" tracking="1" cursor="1" orientation="0">
<xi:include href="$NAVIT_SHAREDIR/navit.xml" xpointer="xpointer(/config/navit/*[name(.)!=
—'vehicle'])"/>

</navit>

</config>

Use this as your $HOME/.navit/navit.xml and you will get everything under <config>..</config> except
<navit>..</navit> (first xi:include), plus <navit> as specified plus everything from navit within config, ex-
cept the vehicle definitions (second xi:include).

5.6. Advanced 25

navit

26

Chapter 5. Configurable Sections

CHAPTER
SIX

CHANGELOG

All notable changes to this project will be documented in this file.

Changes and documentation about Navit can be found in the wiki at:
http://wiki.navit-project.org

A timeline of opened and closed issue tickets can be found at our trac instance:
http://trac.navit-project.org and on our github project: https://github.com/navit-gps/navit/issues

Navit follows the semantic versioning:
* x.y.Z (patch): only bug fixes or refactoring, no changes in functionality

* x.Y.z (minor): added or changed functionality but can be used as a drop-in replacement for the previous version
(all data formats and interfaces are still supported); minor UI changes (such as moving individual menu items)
are also allowed

* X.y.z (major): at least one of the following:

— Major new functionality (such as Augmented Reality, inertial navigation or support for live traffic services):
de-facto standard for end-user apps

— New user interface (such as moving from the old pulldown menu UI to the Internal GUI): this is definitely
the UI equivalent of a breaking API change

— Dropped support for a data format or interface: also a breaking change and usually tends to occur along
with larger changes which would warrant a new major version anyway

6.1 Unreleased

To get the list of all the unreleased commits, see: Full Changelog

6.2 v0.5.6 - 2021-03-06

6.2.1 Added

¢ Add:traffic:Log class/type of unrecognized events during XML parsing. [mvglasow]

Add:traffic:Log ID for messages discarded as invalid. [mvglasow]

* Add:graphics:svg_debug:Add svg_debugging plugin (#1061) [jkoan]

Add:vehicle:Add first Prototype of the geoclue Plugin. [jkoan]

Add:port/android: Adaptive app icon. [mvglasow]

27

http://wiki.navit-project.org
http://trac.navit-project.org
https://github.com/navit-gps/navit/issues
https://github.com/navit-gps/navit/compare/v0.5.6...HEAD

navit

Added license information to fix #1048 (#1060) [Patrick Hohn]

Add:traffic/traff_android:Process heartbeat requests. [mvglasow]

Add:traffic/traff _android:Log subscription operations in detail. [mvglasow]

Add:port/android: Adaptive app icon. [mvglasow]

Add:traffic:Complete TraFF 0.8 subscription suport. [mvglasow]

Add:traffic:Add basic TraFF 0.8 support. [mvglasow]

6.2.2 Changed

» Update macos_development.rst. [Patrick Hohn]

* Change:android:Remove map download size limit on modern Android versions (#1029) [Johan Fitié]

6.2.3 Fixed

* Build:Use NDK libraries when building for Android. [mvglasow]
* Build:Keep generated Android resource files in build dir. [mvglasow]

* Build:Reduce source tree pollution by Android build CMake output now moved to android-builddir Generated
XML, PNG and translations still get written to source tree. [mvglasow]

* Vehicle:gpsd:Fix #1090, plugin_init not found. [jkoan]

* Fixed:android:build:Fixed the apk outputname and the corresponding locations within the scripts. [jkoan]
* Build:do not request CXX if explicitly disabled. [mvglasow]

* Build/android:do not double-define getcwd on recent NDK versions. [mvglasow]

* Build:android: Fix VersionCode after 31.12.2020 (#1082) [jkoan]

* Fix Link to full Changelog. [jkoan]

* Build:Remove install of git as the baseimage already has it. [jkoan]

* Builds:Revert baseimage back and oly set merge_trunk_in_master to cimg/base. [jkoan]

» Core:Prevent crash if destination is set before acquiring a location. [mvglasow]

* Vehicle_geoclue:Fix speed and direction and do some cleanup. [jkoan]

* Vehicle:Fix codestyle. [jkoan]

* Android:Add possibility to use background position usage. [jkoan]

¢ Build:Prevent try_compile() from choking on CXX. [mvglasow]

* Plugin/j1850: Replace graphic_fg_white with graphic_fg. [James Hilliard]

* Build:core:Fix two issues where the wrong enum type is used, but both have the same value of 0. [jkoan]
¢ Core:osd:Altitude in metric with imperial defined. [Patrick Hohn]

* Build:android: Add extra security check for gradle. [jkoan]

* Android:Add possibility to use background position usage. [jkoan]

* Vehicle:gpsd:minor comment fix. [jkoan]

* Fix:graphics:win32:Fix build with newer libpng versions. Thx @bignaux fixes #984. [jkoan]

28 Chapter 6. Changelog

navit

* Build:Fix usage of inkscape 1.0 commandline usage. [jkoan]

* Build:Fix Codesigning with newer ndk image versions. [jkoan]

* Maptool:Add missing external, fixes #1045. [barbeque-squared]

* Graphics/qt5:Add missing include. [barbeque-squared]

* Vehicle:gpsd: Add Support for Gpsd 3.21. [jkoan]

» Core:Optimize log message for required vehicle attributes. [jkoan]

¢ Traffic/traff_android:Get subscription ID from request where applicable. [mvglasow]
e Traffic/traff_android:Fix log messages when subscription ID is missing. [mvglasow]
e Traffic/traff_android:Fix log messages when content URI is missing. [mvglasow]

* Traffic/traff_android:Fix subscription lookup. [mvglasow]

» Core:Prevent crash if destination is set before acquiring a location. [mvglasow]

¢ Core:Fix invalid pointer which would cause unpredictable crashes. [mvglasow]

» Core:set destination before firing callbacks. [mvglasow]

¢ Build:Prevent try_compile() from choking on CXX. [mvglasow]

6.2.4 Other

* Refactor:fdroid:Remove build.xml generation. [mvglasow]

» Refactor:core:Documentation update (#1095) [mvglasow]

* Refactor:build:merge into one single build.gradle. [mvglasow]

* Refactor:traffic/traff_android:remove TODO comment. [mvglasow]

» Refactor:traffic:Make sanity check happy. [mvglasow]

* Docs: fix simple typo, useage -> usage. [Tim Gates]

* Refactor:core:Fix documentation for route_graph_build() [mvglasow]
* Refactor:core:make sanity_check happy (sort of, see #1041) [mvglasow]
» Refactor:core:Fix documentation for route_graph_build() [mvglasow]
 Refactor:traffic/traff_android:Fix checkstyle issues. [mvglasow]

* Refactor:traffic/traff_android:Fix Javadoc formatting. [mvglasow]

e Refactor:traffic/traff_android:More sanity check fixes. [mvglasow]

» Refactor:traffic:Make sanity check happy. [mvglasow]
 Refactor:core:Add documentation. [mvglasow]

* Refactor:core:Add documentation. [mvglasow]

6.2. v0.5.6 - 2021-03-06 29

navit

6.3

v0.5.5 - 2020-08-08

6.3.1 Added

Add poly_swimming_pool. [Stefan Wildemann]

Add:maptool:enhance leisure=track handling and add poi_archeaological_site (#1005) [Stefan Wildemann]
Add:graphics:gtk_drawing_area:textured polygons (#1004) [Stefan Wildemann]

Add:maptool:add waterway=weir as poly_dam to map. [Stefan Wildemann]

Add:layout:add textures for quarry and scrub. (#997) [Stefan Wildemann]

Add:Core:Add mapfeatures (#990) [Stefan Wildemann]

Add:Core+Graphics+Qt5:Add support for textured polygons (#989) [Stefan Wildemann]
Add:build:Android build and signing. Also add fastlane for metadata. Set execute on scripts/*.sh. [jkoan]
Add:cmake: add compilation flags to harden the security of navit (#969) [Joseph Herlant]

6.3.2 Changed

Change:core:Remove unused argument from attr_search. [jkoan]

Change_layout:Make sure park, meadow, scrub, and wood render in correct order (#1017) [Johan Fitié]
Change:style:Reformated style to match gradle. [jkoan]

Change:core:Reformat all files for ci check (even those i havent touched) [jkoan]
Change:fastlane:Remove tailing whitespaces from files. [jkoan]

Change:android:build:Fix empty Variable handling. [jkoan]

Change:metadata:Rename Title to “Navit” only because everybody knows that its for Android when found within
F-Droid or Google Play store. [jkoan]

6.3.3 Fixed

Android:Remove old, confusing AndroidManifest.xml. [jkoan]

Android:Readd android:sharedUserld to allow for Updates. [jkoan]

Readme:Fixed broken link #914 (#1031) [Benjamin Davies]

Maptool:better map aerodroms and military areas (#1022) [Stefan Wildemann]

Maptool:Duplicte multipolygons if required (#1019) [Stefan Wildemann]

Layout:Order Parking (can be covered by Meadow, Wood) and Playground (can cover Meadow) (#1023) [Johan
Fitié]

Build:android: Don’t sign apk if no valid keyring is available. [Stefan Wildemann]

Icons:Update svgz files to be valid for librsvg > 2.47 (#991) [jkoan]

POI/poly/labels:Small visual improvements to POI order, poly colors, and labels (#993) [Johan Fitié]
Android:build:Check if Variables are filled before useing them to avoid errors. [jkoan]

Metadata:Move Screenshots with German text to German translation. [jkoan]

30

Chapter 6. Changelog

navit

Metadata:Rename directorys to prepare for Translations. [jkoan]

Build:versioncode needs to use 24h format. [jkoan]

Build:Only master, not all others :D booleans. [jkoan]

Gui:gml:Fix format string. [jkoan]

Gui:gqml: Add missing NULL to vehicle_attr_iter_new. [jkoan]

Change:Disable CXX on the the build_script as well. [jkoan]

Android:build:css is the other way around, so enable the disable. [jkoan]

Build:Fdroid buildenviroment has no CXX and failes doue to this/CXX not needed anyway. [jkoan]
Graphics/android: polygons with hole drawing (#973) [Stefan Wildemann]

Plugins: too few arguments to functions navit_attr_iter_new and config_attr_iter_new (#966) [Joseph Herlant]

Port/android:Use new icon for notification (#963) [mvglasow]

6.3.4 Other

6.4

Android: Activate downloaded maps automatically (#1027) [Johan Fiti€]
Improvement:layout:car-dark Improve Car-Dark layout colors (#1028) [Johan Fitié]

Improvement:layout: Improve Car Dark layout colors, bring all layers up to date with Car Light, automate changes
in all layers with script (#1026) [Johan Fiti¢]

Improve:layout Improve Car Dark layout polygon colors, bring up to date with Car Light polys, automate changes
with script (#1025) [Johan Fitié]

Improvement:layout: Small color tweaks and added polylines (#1024) [Johan Fitié]
Enhancement:layout_car:Add stripes to danger_area (#1020) [Stefan Wildemann]

Make sure industry, sport, meadow, scrub, and